Coherent Unit Actions on Regular Operads and Hopf Algebras

نویسندگان

  • KURUSCH EBRAHIMI-FARD
  • LI GUO
چکیده

J.-L. Loday introduced the concept of coherent unit actions on a regular operad and showed that such actions give Hopf algebra structures on the free algebras. Hopf algebras obtained this way include the Hopf algebras of shuffles, quasi-shuffles and planar rooted trees. We characterize coherent unit actions on binary quadratic regular operads in terms of linear equations of the generators of the operads. We then use these equations to classify operads with coherent unit actions. We further show that coherent unit actions are preserved under taking products and thus yield Hopf algebras on the free object of the product operads when the factor operads have coherent unit actions. On the other hand, coherent unit actions are never preserved under taking the dual in the operadic sense except for the operad of associative algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ] 1 3 O ct 2 00 5 COHERENT UNIT ACTIONS ON REGULAR OPERADS AND HOPF ALGEBRAS

Abstract. J.-L. Loday introduced the concept of coherent unit actions on a regular operad and showed that such actions give Hopf algebra structures on the free algebras. Hopf algebras obtained this way include the Hopf algebras of shuffles, quasi-shuffles and planar rooted trees. We characterize coherent unit actions on binary quadratic regular operads in terms of linear equations of the genera...

متن کامل

Coherent Unit Actions on Operads and Hopf Algebras

Abstract. Coherent unit actions on a binary, quadratic operad were introduced by Loday and were shown by him to give Hopf algebra structures on the free algebras when the operad is also regular with a splitting of associativity. Working with such operads, we characterize coherent unit actions in terms of linear equations of the generators of the operads. We then use these equations to give all ...

متن کامل

NOTES ON REGULAR MULTIPLIER HOPF ALGEBRAS

In this paper, we associate canonically a precyclic mod- ule to a regular multiplier Hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition

متن کامل

Infinitesimal or Cocommutative Dipterous Bialgebras and Good Triples of Operads

The works of Poincaré, Birkhoff, Witt and Cartier, Milnor, Moore on the connected cocommutative Hopf algebras translated in the language of operads means that the triple of operads (Com,As, Lie) endowed with the Hopf compatiblity relation is good. In this paper, we focus on left dipterous (resp. right dipterous) algebras which are associative algebras with an extra left (resp. right) module on ...

متن کامل

Gorenstein global dimensions for Hopf algebra actions

Let $H$ be a Hopf algebra and $A$ an $H$-bimodule algebra‎. ‎In this paper‎, ‎we investigate Gorenstein global dimensions for Hopf‎ ‎algebras and twisted smash product algebras $Astar H$‎. ‎Results from‎ ‎the literature are generalized‎. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007